Ackermann Steering Principle

What does Ackerman Steering mean?

The Ackermann steering geometry principle is a geometric arrangement of linkages in the steering of a car or other vehicle designed to solve the problem of wheels on the inside and outside of a turn needing to trace out circles of different radius.

It was invented by the German carriage builder Georg Lankensperger in 1817, then patented by Rudolph Ackermann, in the UK in 1818.

The intention of Ackermann geometry is to avoid slipping tyres when cornering.

The geometrical solution to this is for all wheels to have their axles arranged as radii of a circle with a common centre point.

As the rear wheels are fixed, this centre point must be on a line extended from the rear axle. Intersecting the axes of the front wheels on this line as well requires that the inside front wheel is turned, when steering, through a greater angle than the outside wheel. 

Rather than the preceding "turntable" steering, where both front wheels turned around a common pivot, each wheel gained its own pivot, close to its own hub.
While more complex, this arrangement enhances controllability by avoiding large inputs from road surface variations being applied to the end of a long lever arm, as well as greatly reducing the fore-and-aft travel of the steered wheels.

A linkage between these hubs pivots the two wheels together, and by careful arrangement of the linkage dimensions the Ackermann geometry could be approximated.

This was achieved by making the linkage not a simple parallelogram, but by making the length of the track rod (the moving link between the hubs) shorter than that of the axle, so that the steering arms of the hubs appeared to "toe out".

As the steering moved, the wheels turned according to Ackermann, with the inner wheel turning further. If the track rod is placed ahead of the axle, it should instead be longer in comparison, to preserve this same "toe out".

Simple approximation to perfect Ackermann steering geometry may be generated by moving the steering pivot points inward so as to lie on a line drawn between the steering kingpins and the centre of the rear axle. The steering pivot points are joined by a rigid bar called the tie rod which can also be part of the steering mechanism, in the form of a rack and pinion for instance. With perfect Ackermann, at any angle of steering, the centre point of all of the circles traced by all wheels will lie at a common point. Note that this may be difficult to arrange in practice with simple linkages, and designers are advised to draw or analyze their steering systems over the full range of steering angles.

Some race cars use reverse Ackermann geometry to compensate for the large difference in slip angle between the inner and outer front tyres while cornering at high speed.

The use of such geometry helps reduce tyre temperatures during high-speed cornering but compromises performance in low-speed manoeuvres.

Video From the Tube that explains it the easy way...

In Dutch

Het Ackermann-principe houdt in dat de hoek van een voorwiel van een voertuig in een bocht 90 graden staat ten opzichte van een lijn naar een denkbeeldig punt dat in het verlengde van de achteras ligt, om te voorkomen dat de voorwielen in een bocht gaan wringen.

Het Ackermann-principe veroorzaakt een (toenemend) uitspoor bij het nemen van een bocht. 

Het Ackermann-principe is ontdekt door de Duitse rijtuigbouwer Georg Lankensperger in 1817 en is gepatenteerd in 1818 Rudolph Ackermann, UK (1764–1834).  

Het Ackermann-principe is alleen van toepassing bij een vooras die voorzien is van fusees, bij een starre vooras zoals bijvoorbeeld een koets vaak heeft, is dit principe niet van toepassing. 

Het Ackermann-principe is een theoretisch principe.

In de praktijk wordt het denkbeeldige punt door constructeurs vaak niet op de achteras gelegd om betere rijeigenschappen te krijgen. Naast het camber en de balhoofdhoek (caster) is meer-, minder- of dicht bij nul Ackermann belangrijk voor de rijeigenschappen van een vervoersmiddel. Bij een eventuele verlenging of verkorting van het platform zoals bijvoorbeeld bij een buggy vaak gedaan wordt wordt het fictieve Ackermann punt verlegd. Hierdoor zullen de rijeigenschappen veranderen.

No comments:

Post a Comment